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 This paper describes an aeroelastic model for an airfoil test rig which is based on the
 mode superposition method for structural systems and linear airfoil theory for describing
 the unsteady airfoil loading .  The model is applied to the case of an airfoil undergoing
 rapid ,  small amplitude step-like maneuvers .  The motivation for these tests was an interest
 in measuring airfoil indicial responses ,  which are defined as the loading response to a step
 input in angle of attack .  Due to the rapid starting and stopping of the airfoil rig ,  the
 structure may experience significant aeroelastic deformations .  These may arise from
 inertial as well as aerodynamic ef fects .  The present model may be of general interest as a
 means for quantifying and correcting aeroelastic ef fects in tow tank and wind tunnel test
 facilities .

 ÷   1997 Academic Press Limited

 1 .  INTRODUCTION

 T HE  convolution integral formulation for the potential flow lift on a flat plate airfoil in
 arbitrary motion has been derived in Bisplinghof f  et al .  (1957) .  The formulation
 requires an indicial lift function which ,  by definition ,  is the transient lift response to a
 step change in angle of attack .  The potential flow indicial lift response for a flat plate
 airfoil experiencing a step change in angle of attack due to plunge was first derived by
 Wagner (1925) .  Bisplinghof f  et al .  have derived Wagner’s function under the
 assumption of small perturbations using a Fourier integral of Theodorsen’s function
 (Theodorsen 1935) for harmonic motions .  Beddoes (1984) has used the Laplace
 transform method to derive the lift transfer function for a number of airfoil motions .
 The Laplace domain formulation includes the indicial lift function .  Knowledge of the
 indicial response is thus a central issue in modeling linear airfoil responses to arbitrary
 motions .

 Graham  et al .  (1991) describe a tow-tank study designed to measure the normal force
 response of a NACA 0015 airfoil experiencing rapid step-like changes in angle of
 attack by rotation about the quarter chord (as measured from the airfoil leading edge) .
 The motivation for these experiments was to study airfoil indicial-response aerodynam-
 ics as defined in the theory of nonlinear mathematical modeling for aerodynamic
 systems (Tobak & Schif f 1981) .  These experiments involved strain-gauge load-cell
 measurements of the transient normal force loading on an airfoil undergoing a sudden
 change in angle of attack of approximately  D a  5  1 1 8 .  The angle of attack prior to the
 step onset ( a  0 ) was steady and was varied from run-to-run over the range
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 2 8  ,  a  0  ,  60 8 .  Nonlinear mathematical modeling for aerodynamic systems extends the
 generality of the above linear models to account for more complex flow phenomena
 associated with highly unsteady motion history ef fects on the flow field .  Such ef fects
 may include ,  for example ,  delayed flow separation due to unsteady motion ,  and
 dynamic loading augmentation associated with aerodynamic stall .  From a computa-
 tional standpoint ,  knowledge of the nonlinear indicial response is a fundamental
 requirement of this method .

 In the present tow-tank studies ,  the test rig may experience large inertial and
 aerodynamic loading due to the rapid starting and stopping required to impart the step .
 Therefore ,  an important issue is the degree to which aeroelastic reactions deform the
 structure ,  thereby influencing the output of the strain-gauge bridge .  Knowledge of
 these reactions is useful in comparing these strain-gauge data with the theoretical
 indicial response of Wagner .  This paper describes an aeroelastic analysis of the Ohio
 University tow-tank test rig .  The model is based on the mode superposition method for
 structural systems and classical linear airfoil theory .  The Laplace transform method is
 used to solve the equations of aeroelasticity in closed form .  The methods employed
 herein may be of general interest to experimentalists for quantifying the ef fects of
 aeroelasticity in tow tank and wind tunnel test rigs .

 1 . 1 .  O HIO  U NIVERSITY  T OW -T ANK

 A schematic of the present tow-tank is shown in Figure 1(a) .  The facility consists of a
 large tank with a 152 ? 4  mm (6  in) chord NACA 0015 airfoil suspended vertically in the
 water with a submerged length of 1 ? 067  m (42 ? 0  in . ) .  A carriage moves in translation at
 0 ? 61  m / s (2  ft / s) along roller bearings fixed to I-beams which span the tank .  The airfoil
 is driven in rotation by a drive shaft fixed to the airfoil quarter chord at one end ,  and
 coupled to a 3 ? 5  hp stepper-motor / gear-box apparatus at the other end .  Figure 1(b)

Tank

Water surface

Moving carriage

Precision ground shaft

Translation

Speed reducer Stepper motor

Angle of attack
potentiometer

Pitching

NACA 0015
airfoil

 Figure 1(a) .  Tow-tank facility .
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 Figure 1(b) .  Airfoil test rig .  All dimensions are in inches (1  in  5  25 ? 4  mm) .

 shows details of the drive shaft and airfoil .  Shown here are dimensions in inches ,  and a
 numbering scheme (1 – 23) defined for the purpose of discretizing the mass of the
 structure ,  as will be discussed in detail .  The drive shaft has a number of variations in
 cross-section over the length of the shaft which must be considered in modeling the
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 aeroelastic response of the structure .  Near the middle of the drive shaft is a machined
 rectangular section which has a strain-gauge load-cell adhered to the shaft .  The
 load-cell section is discretized into mass elements 5 – 9 ,  with the strain-gauges located at
 the centroid of element 7 .  The strain-gauge circuit is electrically compensated to be
 sensitive to chord-normal forces only .  The uppermost mass element 1 is made of steel ,
 while all other parts are aluminum .  The modulus of elasticity ( E ) for steel was taken to
 be 2 ? 07  3  10 1 1  N / m 2  (30  3  10 6  psi) ,  and for the aluminum was measured to be
 5 ? 03  3  10 1 0  N / m 2  (7 ? 3  3  10 6  psi) .  The modulus of rigidity ( G ) was taken to be
 6 ? 90  3  10 1 0  N / m 2  (10  3  10 6  psi) for the steel ,  and for aluminum 2 ? 76  3  10 1 0  N / m 2

 (4  3  10 6  psi) .  The area moment of inertia of the airfoil about the chord line is 4 ? 99  cm 4

 (0 ? 12  in 4 ) and the center of mass of the airfoil is located 33 ? 31  mm (1 ? 335  in) behind the
 pitch axis at the quarter chord .  The polar moment of inertia of the airfoil about the
 pitch axis is 279 ? 3  cm 4  (6 ? 71  in 4 ) .  The densities of steel and aluminum were taken to be
 8 ? 30  kg / m 3  and (2 ? 77  3  10 3  kg / m 3 ) .  The mass of the airfoil per unit length is 2 ? 854  kg / m
 (0 ? 1598  lb m / in) .

 1 . 2 .  P OTENTIAL  F LOW  N ORMAL  F ORCE  R ESPONSE   FOR  S MALL  A NGLES   OF  A TTACK

 In an incompressible flow at small incidence ,  the theoretical linear normal force
 coef ficient response of an airfoil given an instantaneous step change in angle of attack
 by  rotation  about the quarter chord is related to the indicial lift function ,   G  ( t ) ,  and is
 given by

 C N ( t )  5  C N o  1  π D a  [ d  ( t  2  0)  1  1 – 2 d  ( t  2  0)]  1  2 π D a  [ G  ( t )  1  G ~  ( t )] ,  (1a)

 where  C N o   is the initial normal force ,   D a   is the step amplitude ,   d ~    is the time derivative
 of the Dirac delta function  d  ,  and  G ~    is the time derivative of  G  .  The first two terms in
 brackets in equation (1a) are generalized functions (Kaplan 1973) which describe the
 so-called noncirculatory component of the loading ,  while the last group of terms gives
 the circulatory component .  Equation (1a) may be derived from the convolution integral
 formulation of Bisplinghof f  et al .  (1957) by assuming zero plunge rate and a step
 change in angle of attack by rotation given by  a  ( t )  5  D a m  ( t  2  0) ,  where  m  ( t  2  0) is the
 unit step function .  For a flat plate airfoil the indicial function due to a step change in
 pure plunge can be represented by a two-pole curve fit to Wagner’s function ,

 G  ( t )  5  [1  2  0 ? 165e 2 0 ? 0455 t  2  0 ? 335e 2 0 ? 3 t ] .  (1b)

 Transient normal force responses of a NACA 0015 airfoil undergoing sudden
 step-like changes in angle of attack by rotation have been measured in the Ohio
 University tow-tank .  Figure 2 shows angle of attack data for a typical run (small spikes
 are electrical noise) .  The onset angle is 2 ? 09 8  and the step amplitude is approximately
 1 1 ? 25 8 .  The motion resembles ,  to a reasonable approximation ,  a small amplitude ramp
 motion with a pitch rate of approximately 75 8 / s ,  which yields a nondimensional pitch
 rate ( a ~  b  / U , b  5  semichord length ,   U  5  freestream velocity) of 0 ? 16 .  Equation (1a) is
 later compared (Figure 6) with the experimental strain-gauge data corresponding to the
 motion of Figure 2 .  To facilitate the comparison ,  the coef ficient 2 π   (for a flat plate
 airfoil) on the circulatory part in equation (1a) has been replaced by the static normal
 force curve slope (for the present NACA 0015) which has been measured in an
 independent test on the same rig .  This substitution is necessary for the response of
 equation (1a) to approach the same steady state as the experimental response .
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 Figure 2 .  Angle of attack data versus time for indicial response test .

 2 .  AEROELASTIC ANALYSIS

 The present analysis is based on a combination of the mode superposition method for a
 forced structural dynamic response (Clough & Penzien 1975) ,  and linear airfoil theory
 formulated in terms of the convolution integral for the loading on an airfoil in arbitrary
 motion (Bisplinghof f  et al .  1957) .  The structure to be modeled has been shown in
 Figure 1(b) .  Because the pitch axis (drive shaft axis) does not coincide with the center
 of mass of the lower part of the structure (mass elements 13 – 23) ,  it is necessary to
 consider the coupling between the normal and torsional aeroelastic degrees of freedom .

 2 . 1 .  S YSTEM  R EPRESENTATION

 As illustrated in Figure 1(b) ,  the structure has been discretized into 23 mass elements
 which are considered to be concentrated at the centroid of each element .  Under the
 influence of aeroelastic loading the masses will deflect normal to the airfoil chord ,
 referred to here as the normal degree of freedom (NDOF) ,  as well as in torsion about
 the pitch axis ,  hereafter referred to as the TDOF .  The lowest nine masses (15 – 23)
 represent the submerged portion of the airfoil ,  and masses 5 – 9 correspond to the
 rectangular cross-section load-cell .  Masses are concentrated on the load-cell to obtain
 good resolution of the deformation and strain .  In the TDOF the mass elements are
 replaced by polar mass moment of inertia elements .  For the TDOF analysis the
 structure is discretized in the same way as the NDOF for elements 1 – 12 ;  however ,
 elements 13 – 23 are lumped into a single inertia element ,  giving a total of 13 inertia
 elements .  The reduction in elements in the TDOF is based on the fact that the
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 torsional stif fness of both the mounting block (elements 13) and airfoil are much larger
 than the drive shaft ,  and consequently the mounting block and entire airfoil experience
 nearly the same TDOF deflection .  The resulting discretized structure may be described
 mathematically in terms of a diagonal mass matrix  M ,  a symmetric NDOF flexibility
 matrix  AN ,  a diagonal polar mass moment of inertia matrix  J ,  and a symmetric TDOF
 flexibility matrix  AT .  The flexibility coef ficient  AN ( i ,  j ) is ,  by definition ,  the deflection
 of mass  i  due to a unit force applied at mass  j ,  while  AT  ( i ,  j ) gives the angular rotation
 of polar inertia  i  due to a unit torque applied to inertia  j .  The matrix  AN  has been
 computed by assuming that the structure deforms as a cantilever beam and integrating
 the second order dif ferential equation for the elastic beam curvature (Fung 1969) .  A
 condition of continuous slope is applied at discontinuities in area moment of inertia of
 the drive shaft .  The matrix  AT  has been computed using mechanics for shafts in torsion
 (Higdon  et al .  1960) .  The analytically derived flexibility matrices have been validated to
 some extent by loading the structure and measuring the deflection at selected points .
 For example ,  the analytical value of  AN (15 ,  15) is 3 ? 4143E-3  in / lb f ,  while the
 experimental value is 3 ? 516E-3 in / lb f .  The NDOF stif fness matrix  KN  and TDOF
 stif fness matrix  KT  are computed by inverting  AN  and  AT ,  respectively ,  and has been
 done using an IMSL subroutine .  The structure was loaded over a wide range of loads
 to confirm the linearity of the stif fness in bending .  The linearity of the TDOF was
 assumed ,  but not measured experimentally .

 2 . 2 .  E IGENVALUE  P ROBLEM

 The system matrices in the foregoing have been used to solve the eigenvalue problem
 for the natural frequencies and mode shape vectors of the system .  The eigenvalues
 (natural frequencies) and eigenvectors (modal vectors) have been computed using the
 IMSL subroutine EVCRG .  In the mode superposition analysis ,  the two lowest NDOF
 modes (NDOF1 and NDOF2) have been used ,  while for the TDOF only the lowest
 fundamental mode has been retained .  The corresponding modal vectors (mode shapes)
 are plotted in Figure 3 ,  where the distance from the top of the rig is measured from the
 top of the structure illustrated in Figure 1(b) .  The modal vectors are designated below
 as  f N 1  ,  f N 2  and  f T   for the NDOF1 ,  NDOF2 ,  and TDOF ,  respectively .

 The nondimensional natural frequencies ( v b  / U , b  5  semichord length and  U  5
 freestream velocity) for the NDOF modes were computed to be  v N 1  5  6 ? 374 (8 ? 1  Hz)
 and  v N 2  5  26 ? 985 (34 ? 3  Hz) ,  and for the TDOF  v T  5  65 ? 782 (83 ? 8  Hz) .  Notice that the
 initial part of the angle of attack data (the ramp) of Figure 2 has a slope nearly the
 same as a sine function with a nondimensional frequency near 50 .  This frequency is ,  in
 a sense ,  the excitation frequency .  Because the NDOF2 and TDOF natural frequencies
 are of the same order of magnitude as the excitation frequency ,  it is appropriate to
 consider these modal responses .  As described below ,  the ef fects of apparent (added)
 mass are to reduce the  aeroelastic  response frequencies .

 2 . 3 .  S TRUCTURAL  D YNAMICS  M ODEL

 The aeroelastic structural response of the present test rig has been modeled using the
 mode superposition method and classical linear airfoil theory .  For modeling the rigid
 body rotation of the rig ,  a rotational degree of freedom (RDOF) is introduced .  The
 RDOF is used to simulate the change in angle of attack of the structure due to the
 rotation imparted by the stepper motor .  The NDOF and TDOF ,  as defined above ,
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 Figure 3 .  Modal vectors .

 simulate only deformations relative to the instantaneous position of the top of the drive
 shaft ,  where both the NDOF and TDOF deflections are always zero .

 In the NDOF and TDOF ,  the deflections of the structure are given by the
 normalized mode shape vectors multiplied by time-dependent modal amplitudes .  The
 total deflection of the structure is defined by

 v N ( t )  5  f N 1 q 1 ( t )  1  f N 2 q 2 ( t ) ,

 v T  5  f T g ( t ) ,  (2)

 a  ( t )  5  p ( t ) ,

 where  v N   and  v T   are the deflection vectors in the NDOF nd TDOF ,  respectively ,  and
 a  ( t )   describes the RDOF motion .  The quantities  q 1 ( t ) , q 2 ( t ) ,  and  g ( t ) are the modal
 amplitudes and the generalized coordinates of the system .  The scalar RDOF motion
 variable  p ( t ) is the magnitude of the nominal angle of attack as the structure is pitched ,
 and is an input to the model .  This is the angle measured by the rotational
 potentiometer illustrated in Figure 1(a) .

 Substituting equations (2) into the equations of motion for the system ,  and using the
 orthogonality of the modal vectors with respect to the system mass and stif fness
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 matrices to uncouple the modal equations ,  yields the following three generalized
 equations of motion :

 M 1 q ̈  1  1  K 1 q 1  5  f T
 N 1 F ,

 M 2 q ̈  2  1  K 2 q 2  5  f T
 N 2 F ,  (3)

 Jg ̈  1  C T g ~  1  K T g  5  f T
 T T ,

 where the generalized system properties are scalar quantities given by

 M 1  5  f T
 N 1 M f N 1  ,  M 2  5  f T

 N 2 M f N 2  ,  J  5  f T
 T J f T  ,

 K 1  5  f T
 N 1 KN f N 1  ,  K 2  5  f T

 N 2 KN f N 2  ,  K T  5  f T
 T KT f T  ,  (4)

 C T  5  2 z T J v T .

 The damping term in the last of equations (3) is included to account for a small amount
 of rotational ‘‘play’’ in the airfoil drive shaft which tends to cause oscillations in TDOF
 to damp out .  In equation (4) ,   z T   is the damping ratio ,  which was estimated to be 0 ? 05 ,
 and  v T   is the natural frequency in the TDOF .  The closed form solution of equations
 (3) for the generalized coordiantes  q 1 ( t ) , q 2 ( t ) ,  and  g ( t ) ,  subject to a prescribed RDOF
 input parameter  p ( t ) ,  is described below .  Other structural models (e . g .  NASTRAN)
 for representing the right-hand side of equations (3) are possible ;  however ,  these would
 have to be somehow coupled with the aerodynamic model described below ,  and would
 probably require a time-discretized numerical formulation .

 2 . 4 .  A EROELASTIC  N ORMAL  F ORCES

 The normal force acting on the structure is decomposed into a rigid body force vector ,
 F R  ,  associated with the RDOF ,  an aeroelastic force vector ,   F A  ,  due to time-dependent
 aeroelastic deflections along the span of the airfoil ,  and an inertial force vector ,   F I  ,  so
 that in equations (3) ,   F  5  F R  1  F A  1  F I  .

 The rigid-body force vector is the ideal aerodynamic loading response to a step
 change in angle of attack due to rotation about the quarter chord .  These aerodynamic
 forces are exerted only on the submerged part of the airfoil represented by masses
 15 – 23 of Figure 1(b) .  For a given motion input  p ( t ) ,  the vector  F R   at any time ,   t ,  at or
 after the step is given by

 (5)

 F R i  5  0 ,  i  5  1 ,  2 ,  .  .  .  ,  14 ,

 F R i ( t )  5  π L i h p ~  ( t )  1  1 – 2 p ̈  ( t ) j  1  C N a  L i E t

 0
 [ p ~  ( τ  )  1  p ̈  ( τ  )] G  ( t  2  τ  )  d τ  ,  i  5  15 ,  16 ,  .  .  .  ,  23 ,

 where  C N a   is the static normal force curve slope ,   L i   is the span of the  i th airfoil
 element ,  and  G  ( t  2  τ  ) is the indicial lift response given by equation (1b) .  Notice that  F R

 is not a function of the generalized coordinates  q 1 ( t ) ,  q 2 ( t ) and  g ( t ) ,  since in the ideal
 response the loading is given by (rigid body) 2-D airfoil theory alone .  Notice also that
 if  p ( t ) is a unit step function of amplitude  D a   and  L i   is unity ,  equation (5) becomes
 identical to equation (1a) .

 The aeroelastic force vector is also based on the convolution integral formulation for
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 an airfoil in arbitrary motion ,  and again acts only on the submerged part of the airfoil .
 For the pitch axis at the quarter chord the loading is

 F A i  5  0 ,  i  5  1 ,  2 ,  .  .  .  ,  14 ,

 F A i ( t )  5  π L i h 2 ( f N 1 i q ̈  1 ( t )  1  f N 2 i q ̈  2 ( t ))  1  f T i ( g ~  ( t )  1  1 – 2 g ̈  ( t )) j
 (6)

 1  C N a  L i E t

 0
 [ 2 ( f N 1 i q ̈  1 ( τ  )  1  f N 2 i q ̈  2 ( τ  ))  1  f T i ( g ~  ( τ  )  1  g ̈  ( τ  ))] G  ( t  2  τ  )  d τ  ,

 i  5  15 ,  16 ,  .  .  .  ,  23 ,

 where  f N 1 i   and  f N 2 i   are the values of the NDOF1 and NDOF2 mode shapes at element
 i ,  respectively ,  and  f T i   is the value of the TDOF mode shape .  The negative sign on the
 NDOF terms is due to the sign convention adopted .  Note that the first two terms on
 the right-hand side of equation (6) are the apparent mass terms ,  which may be
 combined directly with the generalized masses  M 1  and  M 2  in equations (3) and thus
 increase the ‘‘apparent mass’’ of the system .  As noted below ,  the ef fect of the added
 mass is to reduce the aeroelastic response frequencies from the natural frequency
 values .

 The inertial loading arises from the fact that the centroids of masses 13 – 23 do not
 coincide with the pitch axis .  Thus ,  angular acceleration about the pitch axis produces
 an inertial normal force which acts at the centroid .  The inertial force vector is

 (7)
 F I i  5  0 ,  i  5  1 ,  2 ,  .  .  .  ,  12 ,

 F I i ( t )  5  m i r i h f T i g ̈  ( t )  1  p ̈  ( t ) j ,  i  5  13 ,  14 ,  .  .  .  ,  23 ,

 where  m i   is the mass of element  i  and  r i   is the distance from the pitch axis to the
 centroid .

 2 . 5 .  A EROELASTIC  M OMENTS

 The moments acting on the inertial elements of Figure 1(b) are also decomposed into a
 rigid body moment vector ,   T R  ,  an aeroelastic moment vector ,   T A  ,  and an inertial
 moment vector ,   T I  ,  giving a total moment of :   T  5  T R  1  T A  1  T I  .  The rigid-body
 moment and the aeroelastic moment act only on the submerged part of the airfoil .  The
 expressions for these components are simplified by the fact that the circulatory normal
 force acts at the quarter chord (for a flat-plate airfoil) ,  giving a zero moment arm in the
 present study .  For a NACA 0015 airfoil the circulatory normal force at a Reynolds
 number near 10 5  acts within a 2% fraction of chord from the quarter chord ,  and on this
 basis has been neglected .  The rigid body moment for rotation about the quarter chord
 is

 (8)
 T R i  5  0 ,  i  5  1 ,  2 ,  .  .  .  ,  14 ,

 T R I ( t )  5  2 π L i h p ~  ( t )  1  3 – 8 p ̈  ( t ) j ,  i  5  15 ,  16 ,  .  .  .  ,  23 .

 The aeroelastic moment vector acting on an airfoil in arbitrary motion with the pitch
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 axis the quarter chord is given by

 (9)
 T A i  5  0 ,  i  5  1 ,  2 ,  .  .  .  ,  14 ,

 T A i ( t )  5  π L i h  1 – 2 ( f N 1 i q ̈  1 ( t )  1  f N 2 i q ̈  2 ( t ))  2  f T i ( g ~  ( t )  1  3 – 8 g ̈  ( t )) j ,  i  5  15 ,  16 ,  .  .  .  ,  23 .

 The inertial moment vector is

 (10)
 T I i  5  J i p ̈  ( t ) ,  i  5  1 ,  2 ,  .  .  .  ,  12 ,

 T I i ( t )  5  m i r i [ f N 1 i q ̈  1 ( t )  1  f N 2 i q ̈  2 ( t )]  2  J i p ̈  ( t ) ,  i  5  13 ,  14 ,  .  .  .  ,  23 ,

 where  J i   is the mass moment of inertia of element  i .

 2 . 6 .  I NPUT  R IGID -B ODY  M OTION

 Two input motions have been considered and are illustrated in Figure 4 .  The first
 motion is a step function input of magnitude  D a  ,  and the second input is a small
 amplitude ramp modeled after the experimental angle of attack of Figure 2 .  These
 motions are expressed mathematically by

 p ( t )  5  D a m  ( t  2  0)  (step) ,  (11a)

 p ( t )  5
 D a

 τ s
 t ( m  ( t  2  0)  2  m  ( t  2  τ s ))  1  D a m  ( t  2  τ s )  (ramp) ,  (11b)

 where  m   is the unit step function ,  and  τ s   (  5  0 ? 13 semichords) is the ramp duration ,
 which is determined from the experimental angle-of-attack data .  As will be seen ,  it will
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 Figure 4 .  Step and ramp input motions .
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 be necessary to take the Laplace transform of equations (11a) and (11b) ,  which yields ,
 respectively ,

 P ( s )  5
 D a

 s
 (step) ,  (11c)

 P ( s )  5
 D a

 s 2 τ s
 (1  2  e 2 s τ s )  (ramp) ,  (11d)

 where  s  is the Laplace variable .

 2 . 7 .  S OLUTION   OF   THE  G ENERALIZED  E QUATIONS   OF  M OTION

 The Laplace transform method is used to transform the three generalized dif ferential
 equations (3) into three algebraic equations which are linear in terms of the
 transformed generalized coordinates .  These equations are solved simultaneously for
 the transformed generalized coordinates as functions of the Laplace variable ,   s .  The
 inverse Laplace transform is performed to transform these solutions to the time domain
 to obtain  q 1 ( t ) ,  q 2 ( t ) and  g ( t ) .  The Laplace transform of each of equations (3) can be
 done by hand using standard tables .  To perform the extensive algebra required in the
 solution ,  the computer program MACSYMA has been used .  MACSYMA is capable of
 symbolic mathematics required in the solution of the simultaneous equations in terms
 of the Laplace variable  s .  The resulting equations of motion in the Laplace transform
 domain are quite long and are omitted here for brevity .  Once the Laplace transforms
 have been done ,  the solution proceeds by first rearranging ,  using MACSYMA ,  the
 system of three equations into the following form

 3  A 1 1 ( s )  A 1 2 ( s )  A 1 3 ( s )
 A 2 1 ( s )  A 2 2 ( s )  A 2 3 ( s )
 A 3 1 ( s )  A 3 2 ( s )  A 3 3 ( s )

 4 5  Q 1 ( s )
 Q 2 ( s )
 G ( s )

 6  5 5  F 1 ( s )
 F 2 ( s )
 F 3 ( s )

 6 P ( s ) ,  (12)

 where  Q 1 ( s ) is the Laplace transform of  q 1 ( t ) , Q 2 ( s ) of  q 2 ( t ) ,  and  G ( s ) of  g ( t ) .  In
 equation (12) ,   P ( s ) is the Laplace transform of the motion input parameter  p ( t )
 [equations (11)] .  Equation (12) can be solved using Cramer’s rule to yield

 X ( s )  5  R ( s ) P ( s ) ,  (13a)

 where  X ( s ) is a 3  3  1 vector given by

 h X  ( s ) j  5 5  Q 1 ( s )
 Q 2 ( s )
 G ( s )

 6 ,  (13b)

 and the 3  3  1 vector  R ( s ) is an aeroelastic transfer function which is a function of the
 Laplace variable  s  only ,  and is given by

 R 1 ( s )  5

 )  F 1 ( s )
 F 2 ( s )
 F 3 ( s )

 A 1 2 ( s )
 A 2 2 ( s )
 A 3 2 ( s )

 A 1 3 ( s )
 A 2 3 ( s )
 A 3 3 ( s )

 )
 ,  R 2 ( s )  5

 )  A 1 1 ( s )
 A 2 1 ( s )
 A 3 1 ( s )

 F 1 ( s )
 F 2 ( s )
 F 3 ( s )

 A 1 3 ( s )
 A 2 3 ( s )
 A 3 3 ( s )

 )
 ,

 )  A 1 1 ( s )
 A 2 1 ( s )
 A 3 1 ( s )

 A 1 2 ( s )
 A 2 2 ( s )
 A 3 2 ( s )

 A 1 3 ( s )
 A 2 3 ( s )
 A 3 3 ( s )

 )  )  A 1 1 ( s )
 A 2 1 ( s )
 A 3 1 ( s )

 A 1 2 ( s )
 A 2 2 ( s )
 A 3 2 ( s )

 A 1 3 ( s )
 A 2 3 ( s )
 A 3 3 ( s )

 )
 ——————————–  ——————————–
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 R 3 ( s )  5

 )  A 1 1 ( s )
 A 2 1 ( s )
 A 3 1 ( s )

 A 1 2 ( s )
 A 2 2 ( s )
 A 3 2 ( s )

 F 1 ( s )
 F 2 ( s )
 F 3 ( s )

 )
 ,

 )  A 1 1 ( s )
 A 2 1 ( s )
 A 3 1 ( s )

 A 1 2 ( s )
 A 2 2 ( s )
 A 3 2 ( s )

 A 1 3 ( s )
 A 2 3 ( s )
 A 3 3 ( s )

 )
 ——————————–

 with the brackets indicating the determinant .  It is recommended that the necessary
 algebra be performed on equation (12) so that  R 1 ( s ) , R 2 ( s ) ,  and  R 3 ( s ) are the form of
 the quotients of two polynomials .  This amounts to manipulating equation (12) so that
 all of the terms in the square matrix  A  and the terms in the vector  F  are at most
 polynomials (i . e .  not themselves quotients) .  By way of example ,  the Laplace transform
 of the indicial function  G  ( t  2  τ  ) will be in the form of a quotient which will initially
 appear in both  A  and  F .  From equation (1b) ,  the indicial function is of the form
 G  ( t )  5  1  2  A e a t  2  B e b t ,  which has a Laplace transform :

 g  ( s )  5
 1
 s

 2
 A

 s  2  a
 2

 B
 s  2  b

 5
 (1  2  A  2  B ) s 2  1  ( Ab  1  Ba  2  a  2  b ) s  1  ab

 s ( s  2  a )( s  2  b )
 .  (13c)

 The quotient may be eliminated by simply multiplying the entire system of equations
 (12) by the denominator of  g  ( s ) .  This will render the terms of  A  and  F  as nonquotients
 and simplify the partial fraction decomposition which follows .

 Substitution of a particular input motion ,   P ( s ) ,  into equation (12) gives the solution
 for the generalized coordinates in the Laplace domain .  For the step input of equation
 (11c) ,  the result for each generalized coordinate is in the form of a quotient of two
 polynomials in  s ,  wherein the numerator is a 10th-order polynomial and the
 denominator is an 11th-order polynomial .  For the ramp motion of equation (11d) the
 result is a 10th-order divided by a 12th-order polynomial .

 In either case ,  the inverse Laplace transform is accomplished by decomposing the
 quotients using partial fractions into functions which can be inverted by hand .  In the
 partial fraction decomposition ,  MACSYMA has been used to find the roots of the
 polynomial in the denominator .  In the step input case the denominator has five real
 roots ,  while in the ramp input the denomination has six real roots with a repeated root
 at  s  5  0 .  These roots arise from the exponential terms in the indicial response function ,
 G  .  In both the step and ramp input cases ,  the denominator further has three pairs of
 complex conjugate roots which represent the oscillatory (harmonic) response of the
 structure at the three frequencies associated with the NDOF1 ,  NDOF2 ,  and TDOF .
 The numerical values of the frequencies of the harmonic response can be traced to the
 mass (including apparent mass) and stif fness terms in the governing aeroelastic
 equations .  The set of simultaneous equations for the undetermined constants in the
 expansion terms have been solved using direct factorization with maximal column
 pivoting (Burden  et al .  1980) .  Pivoting is recommended ,  since the coef ficients in the
 simultaneous equations vary over several orders of magnitude .

 It is worth noting that in the ramp motion input case it is not necessary to use the full
 form of  P ( s ) as given by equation (11d) .  This is because the last exponential term on
 the right-hand side results in an inverse transform identical to the inverse transform of
 the term which precedes it ,  only shifted in time by an amount  τ s  .  Thus ,  it is only
 necessary to use  P ( s )  5  D a  / s 2 τ s   when calculating this case .  This ef fect can be seen in
 the solution given below .
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 The solutions for the generalized coordinates  q 1 ( t ) , q 2 ( t ) and  g ( t ) for the step input
 case can be represented generally by the function  f  ( t ) ,  which has the following form

 f  ( t )  5  A  1  B e b t  1  C e c t  1  D e d t  1  F  r f t  1  e h t ( G  cos  v  1 t  1  H  sin  v  1 t )

 1  e j t ( J  cos  v  2 t  1  K  sin  v  2 t )  1  e m t ( M  cos  v  3 t  1  N  sin  v  3 t ) ,  (14a)

 where each of the constants  A  through  N , b  through  f ,  and  v  1  ,  v  2  ,  and  v  3  are
 determined in the solution procedure described above .  The values of the exponents in
 the exponential terms ( b  – f  ) may be traced directly back to the exponents in the
 indicial response given by equation (1b) .  Numerical values of the constants may be
 found in Graham  et al .  (1994) by the interested reader .

 It is interesting to note the ef fects of the apparent ,  or added ,  mass on the modal
 response frequencies  v  1  (NDOF1) ,   v  2  (NDOF2) and  v  3  (TDOF) .  The natural
 frequency of NDOF1 is 6 ? 4 (rad / semichord) ,  which is reduced to 2 ? 3 by the apparent
 mass .  Likewise ,  the NDOF2 frequency is reduced from 27 ? 0 to 12 ? 2 ,  and the TDOF
 from 65 ? 8 to 52 ? 2 .  Thus ,  the apparent mass ef fects are seen to be very significant in
 relation to the aeroelastic response frequencies .

 For the sudden ramp of equation (11b) ,  the solutions for  q 1 ( t ) , q 2 ( t ) ,  and  g ( t ) in the
 time domain can be represented by a function of the form :

 f  ( t )  2  m  ( t  2  τ s ) f  ( t  2  τ s )  [e . g .,  q 1 ( t )  5  f  ( t )  2  m  ( t  2  τ s ) f  ( t  2  τ s )] ,

 where  τ s   is the ramp duration (0 ? 13 semichords) ,  and  m  ( t  2  τ s ) is the unit step function .
 The ‘‘shifting’’ in the time of the function  f  ( t  2  τ s ) is due to the exponential terms in
 the Laplace transform of those terms containing  m  ( t  2  τ s ) in equation (11b) .  In the
 ramp case ,   f  ( t ) has the form

 f  ( t )  5  A  1  Et  1  B e bt  1  C e ct  1  D e dt  1  F  e ft  1  e ht ( G  cos  v  1 t  1  H  sin  v  1 t )

 1  e jt ( J  cos  v  2 t  1  K  sin  v  2 t )  1  e mt ( M  cos  v  3 t  1  N  sin  v  3 t ) .  (14b)

 Notice the ramp motion gives rise to a term proportional to time  t .  This might be
 expected ,  since the ramp motion produces an upwash at the three-quarter chord
 (Bisplinghof f  et al .  1957) proportional to  t .  For times beyond  τ s  ,  this term goes to  E τ s

 (  5  const . ) to give the steady-state lift .
 The above solutions are in closed form and have the mathematical properties that

 might be anticipated .  That is ,  the exponential terms giving the response to a circulatory
 build-up in lift after the motion input ,  and an oscillatory component which occurs at
 three distinct frequencies that arise due to the modal coupling in the forcing terms on
 the right-hand side of equations (3) .  The solutions given above are plotted in Figure
 5(a – c) ,  which shows the solutions for both the step input and ramp input .  The modal
 coupling may be observed in the frequency content of each modal solution .  As might
 be expected ,  the step input tends to excite the higher frequency TDOF more than the
 ramp input .

 2 . 8 .  C ALCULATION   OF   THE  S ENSIBLE  F ORCE   AT   THE  L OAD - CELL

 The purpose of the present analysis is to determine the ef fects of aeroelasticity on the
 output of the strain-gauge load-cell used in the experiments described above .  In these
 experiments the strain-gauge output is interpreted ideally as that due to a moment
 exerted by a normal force applied at the midspan of the submerged part of the airfoil
 (point loads were applied here to calibrate the strain-gauge bridge) .  In reality ,
 however ,  this is not the case ,  since the strain-gauge output is determined solely by the
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 Figure 5(a) .  Solution for the NDOF1 generalized coordinate for step and ramp input .
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 Figure 5(b) .  Solution for the NDOF2 generalized coordinate for step and ramp input .
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 Figure 5(c) .  Solution for the TDOF generalized coordinate for step and ramp input .
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 instantaneous beam curvature at the cell .  This curvature is due not to aerodynamic
 loading alone ,  but rather the total aeroelastic structural response .

 From beam theory the moment at the center of the load-cell (centroid of element 7)
 is related to the beam curvature by

 M L C ( t )  5  EI H q 1 ( t ) S d 2 f N 1

 d x 2  D
 7

 1  q 2 ( t ) S d 2 f N 2

 d x 2  D
 7
 J ,  (15a)

 where  x  is measured along the span .  The second derivative has been computed
 numerically from the NDOF mode shapes for elements 5 – 9 using a five-point
 numerical derivative given by Richardson’s extrapolation method (Burden  et al .  1980) .
 A time-dependent ‘‘sensible’’ normal force acting at the midspan of the submerged
 portion of the airfoil which produces the same moment as that given by equation (15a)
 may then be defined for comparison with experimental normal force data .  For this
 purpose ,  the moment arm between the mass 7 and the midspan is  L L C  5  37 ? 0  in .  These
 results are presented in the form of a sensible normal force coef ficient ,  defined as

 C N ( t )  5  C N o  1
 M L C ( t ) / L L C

 r U 2 bL
 ,  (15b)

 where  C N o   is normal force at the origin of the motion ,   r   is the density of water ,  and  L
 is the submerged airfoil length (1 ? 065  m ,  or 42 ? 0  in) ,   U  and  b  are the freestream
 velocity and the semichord length ,  respectively .

 3 .  RESULTS

 Sensible force calculations using the present model are compared below with the
 experimental normal force data of Graham  et al .  (1991) .  A comparison is also made
 with recent accelerometer data taken on the Ohio University tow-tank rig undergoing
 the motion illustrated in Figure 2 .  In these tests an accelerometer (PCB Flexcel Series
 336A) was placed on mass 13 (see Figure 1b) with the accelerometer centered on the
 pitch axis .  The accelerometer is sensitive to motions in one direction only ,  and due to
 the placement of the accelerometer on the pitch axis should be sensitive to NDOF
 deformations only .  The pitch axis of element 13 does undergo deflections in the TDOF
 direction ;  however ,  these are normal to the direction of sensitivity of the sensor .  The
 accelerometer data have been integrated once and put in the form of velocity .  The
 present model can predict velocity at any point on the structure by taking the time
 derivative of equations (2) .  The accelerometer data and normal force data below were
 acquired in separate runs .

 3 . 1 .  S ENSIBLE  F ORCE   AND  A CCELEROMETER  C OMPARISONS

 The two motion inputs given by equations (11a) and (11b) have been considered .  The
 sensible force corresponding to the step input is compared with experimental
 strain-gauge data in Figure 6(a) .  Also shown is the theoretical response based on the
 Wagner function .  There are three frequencies present in the aeroelastic model .  The
 lowest frequency has a period of approximately 2 ? 5 semichords and is associated with
 the NDOF1 fundamental mode .  The second frequency has a period of about 0 ? 5
 semichords and is due to the NDOF2 mode ,  and the third highest frequency ,  with a
 period near 0 ? 1 semichord ,  is due to the coupling between the TDOF and the NDOF1
 and NDOF2 .  It is clear that aeroelastic reactions have caused significant deviation
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 from the theoretical response ,  particularly before about 2 semichords .  There also is
 some discrepancy in the transient response at larger times .

 The sensible force based on the aeroelastic response with the sudden ramp input of
 equation (11b) is illustrated in Figure 6(b) .  The response directly after the motion
 inception is in better agreement with the strain-gauge data than the step input results .
 A comparison of the aeroelastic responses of Figures 6(a) and 6(b) indicates that the
 step input excites the NDOF and TDOF coupling more than the sudden ramp motion ,
 which appears to reproduce the experimental result with better accuracy .  The
 experimental data exhibit discernible oscillations ,  which ,  in the analytical force ,  are
 associated with the NDOF2 mode .  Notice from Figure 5(b) that the NDOF2
 oscillations require a significant period of time to damp out .  It should be noted that the
 uncertainty in the experimental data is near 10% .

 A comparison between the aeroelastic analysis using the instantaneous step input
 and accelerometer data is shown in Figure 7(a) .  The accelerometer data have been
 integrated numerically and put in the form of velocity data .  Again ,  the use of the step
 function input excites the TDOF mode more than the experimental data indicates .  The
 use of the sudden ramp motion gives the results of Figure 7(b) ,  where the agreement
 between the experimental data and the analysis is reasonably good .

 3 . 2 .  D ISCUSSION

 Inspection of Figure 6(b) shows some discrepancies between the experimental data and
 the analytical sensible force .  Some potential sources of error in the present analysis are
 discussed below .

 (i)  The flexibility matrix has been derived analytically from beam theory by
 assuming a cantilever beam with a perfectly rigid base .  In reality ,  however ,  the base
 may experience additional deflections ,  since it is mounted on slender I-beams [see
 Figure 1(a)] which will experience some deflection in the NDOF as the structure is
 loaded .  The ef fect of this is to overestimate the structure stif fness matrix .  Because the
 stif fness matrix is used to compute the mode shapes (eigenvectors) ,  which are in turn
 used to compute the generalized properties ,  this will introduce errors into both the
 NDOF generalized stif fness and the generalized mass .  Errors in the stif fness will also ,
 of course ,  af fect the computed natural frequencies (eigenvalues) .  Errors of as much as
 10% are easily conceivable .  This may be an important consideration in the design of
 dynamic test rigs .

 (ii)  Structural nonlinearities must also be considered .  However ,  notwithstanding
 errors in flexibility discussed above ,  the deflection of the structure due to applied static
 loads has been measured over a wide range of loads at several points on the rig .  These
 measurements have indicated ,  at least statically ,  linear stif fness .

 (iii)  The aerodynamic model employed herein is based on the potential flow indicial
 response for a flat plate airfoil .  There are undoubtedly errors associated with this
 assumption ,  since the present flow is neither truly potential ,  nor is a NACA 0015 airfoil
 a flat plate .  In the former case it is well known that for airfoils having even small
 thickness ,  some flow separation occurs on the aft portion of the upper surface of the
 airfoil even at low angles of attack .  This separation is ,  of course ,  a viscous phenomenon
 and results in some loss of lift .  In the later case ,  from potential flow theory ,  thickness
 adds additional lift ,  which for a NACA 0015 airfoil theoretically amounts to about 11%
 more lift .  This additional potential flow lift is ,  however ,  mitigated by viscous losses .  To
 what extent this occurs is not well known .  In fact ,  a careful review of the literature on
 static airfoils reveals a significant departure from potential flow predictions [see ,  for
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 example ,  the data of Jacobs & Sherman (1937)] as well as discrepancies from test
 facility-to-facility .

 These types of phenomena will manifest themselves through the representation of
 the indicial response given by equation (1b) ,  and will alter the values of the constants
 which appear in the equation (assuming ,  that is ,  that the mathematical form of this
 response remains valid) .  Variations in the constants 0 ? 165 and 0 ? 335 will alter the initial
 instantaneous value of the response .  More importantly ,  perhaps ,  the exponents
 2 0 ? 0455 and  2 0 ? 3 in the exponential terms will change the time constants of not only
 the indicial response ,  but also the time constants of the aeroelastic response .  Note that
 in equations (14a) and (14b) the values of the exponents  b  and  c  have been computed
 to be approximately  2 0 ? 0455 ,  and the constants  d  and  f  to be near  2 0 ? 3 .  Thus ,  the
 exponents in the indicial response naturally find their way through the analysis into the
 system aeroelastic response .  This may be the source for some of the observed
 discrepancies in time of the sensible force results of Figure 6(b) .  The authors are
 unaware of an indicial response model specific to NACA series airfoils .

 4 .  CONCLUSIONS

 The present analysis has been conducted to determine the ef fect of aeroelastic
 reactions on airfoil indicial response tests conducted in a tow tank facility .  The analysis
 has been validated to a reasonable level of accuracy by comparing with strain-gauge
 and accelerometer data .  The results indicate that aeroelasticity causes significant
 deviation from the 2-D theoretical response shortly after the motion inception .  The
 focus of future research will be to use the present aeroelastic model as a basis for
 correcting the indicial response strain-gauge data of Graham  et al .  (1991) for
 aeroelastic ef fects .  In some sense ,  this amounts to working the present analysis in
 reverse .  That is ,  in the present analysis we are given an indicial lift function ,  and for a
 given motion we compute the aeroelastic response .  In the inverse problem we are given
 an aeroelastic response for a given motion ,  and we seek to compute the indicial lift
 function which produces the response .  A theoretical method for the inverse problem
 has been developed by Graham & Islam (1994) ,  and is being applied to the present
 tow-tank data .  An alternative to this approach of correction would be to use an
 aeroelastic analysis in the design stage of a test rig to minimize aeroelastic contribu-
 tions .  The present analysis may be of general interest as a tool for quantifying these
 ef fects in wind tunnel and tow tank test facilities .
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